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Track vibration is one of the main sources of railway rolling noise. The resilient
components in the railway foundation such as the pad and ballast have significant
effects on the track vibration. Usually, their parameters vary with load and
frequency. The wheel load of a train causes local deformation in the track and
the foundation, so the railpads and the ballast are preloaded and thus their
stiffness has different values at the supports near the wheel load from the other
supports. In this paper the preloads in the pad and ballast caused by a single wheel
load are studied by considering the non-linear properties of the track foundation,
and thus the preloaded pad and ballast stiffnesses are determined. A model of the
track dynamics based on an infinite discretely supported Timoshenko beam with
preloaded pad and ballast dynamic stiffnesses is developed. Its vertical vibration
behaviour under the influence of the local wheel load is investigated. It is shown
that the point receptance for vertical vibration is strongly affected by the local
wheel load at low frequencies, but the effect of the local wheel load on the average
wave propagation decay rate along the rail is very limited.
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1. INTRODUCTION

Railway rolling noise is an important environmental issue which forms the
principal source of noise from railway operations. It is generated by vibrations of
both the rail and the wheel that are excited at their interface. In general rail
vibration is more complex than wheel vibration since the track is effectively infinite
and contains components with pronounced non-linear behaviour. Many different
models have been developed to investigate the dynamic properties of railway track
over the years. These models can be divided into four main groups: (a) an infinite,
uniform beam continuously supported by damped resilient and mass layers
(railpads, sleepers and ballast) [1–4]; (b) periodically supported uniform Euler or
Timoshenko beams [1, 2, 5, 6]; (c) finite element meshed rail supported by
continuous pads, sleepers and ballast foundation [7, 8]; (d) finite element meshed
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rail cross-section model with periodic supports [9]. Models (a) and (b) are usually
considered to have a good agreement with measurements in the frequency region
where the cross-sectional deformation of rail does not appear. The predictions
obtained by using models (a) and (b) are better for rail vertical vibration than for
lateral vibration, for example, the periodically supported Timoshenko beam model
may be used for vertical vibration up to about 1500 Hz. Models (c) and (d) are
more useful for predicting high frequency rail vibration and for both vertical and
lateral vibrations because the rail cross-sectional deformation is included in them.
The need to include periodic supports, models (b) and (d), is greater for tracks
with stiff railpads and is generally more important for the vertical direction than
the lateral direction.

In all these models the resilient components in the foundation layers or at the
periodic supports such as the railpad and the ballast have significant effects on the
track vibration, noise radiation, the contact force between rail and wheel and the
generation of rail corrugations. Usually, their parameters are considered uniform
in these models. For example, the pad stiffness and the ballast stiffness are
regarded as constant along the whole railway track or assigned the same value at
each support. In fact these parameters vary with load and frequency.
Measurements [10, 11] have shown that the pad stiffness can vary dramatically
with preload and also varies with vibration frequency. The ballast stiffness is also
strongly dependent upon load and frequency [12]. When a train moves along the
rail, it applies a preload on the rail and its foundation in a local area around each
wheel. Therefore, the pad stiffness and the ballast stiffness near the wheel are
different from those which apply at a distance along the rail. This affects the
dynamic behaviour of the track, thus the rail vibration, noise radiation, contact
force etc. Obviously these parameter variations with wheel preload should be taken
into consideration in these models especially for the vertical vibration.

The aim of this paper is to study the vertical rail vibration properties considering
the pad and ballast stiffness variations due to wheel preload. Although the
behaviour of pads and ballast is non-linear, it is assumed that the dynamic
behaviour can be represented by a linear model with stiffnesses that are chosen
according to the quasi-static load, since the dynamic displacements are small.
Firstly the non-linear load–deflection and load–stiffness laws for both railpad and
ballast are introduced according to [10] and [12]. Then they are combined to obtain
the load–deflection property of the whole rail foundation. After this, the rail
deflection and the reaction force in the foundation under a wheel load are
calculated in order to obtain the different preloads in the pad and ballast at the
different supports along the track. Knowing the preloads in the pad and ballast,
the dynamic stiffness of the preloaded pad and ballast can be determined from data
in references [10] and [12]. Finally a discretely supported Timoshenko beam model
is employed and the receptances and the wave propagation decay rates for vertical
rail vibration are calculated considering the preloaded pad and ballast stiffnesses
which have different values at different supports. The method derived here is
applied to a track consisting of UIC 60 rails on monobloc concrete sleepers. The
railpads are Pandrol studded 10 mm pads. This study shows that when the
preloaded pad and ballast stiffness are considered, the results are quite different
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from the model in which only the uniform values of the pad and ballast stiffness
are employed. However, it is possible to derive an approximate method for using
the simpler model by a combination of loaded and unloaded parameter values.

2. STIFFNESS OF RAILWAY TRACK FOUNDATION

In order to determine the preloaded pad and ballast stiffnesses, the values of
preload in the pad and ballast should be known in advance. In practice this
preload is caused by the weight of trains and is transmitted through the wheels
to the rail and its foundation. It is effectively a static problem to determine the
preload in the pad and ballast. Only one wheel load is considered for simplicity
and at this stage the railway track is simplified to an infinite uniform beam on a
continuous elastic foundation. However, this foundation, composed of railpads
and ballast, has a non-linear behaviour because both railpad and ballast stiffnesses
are non-linear. Therefore, the non-linearity of the railway track foundation should
be studied first.

2.1.  

Both the static and dynamic stiffness of the railpad considered here have been
measured by Thompson et al. [10]. The static load-deflection and load-stiffness
curves are shown in Figure 1, the stiffness being defined here as the inverse of the
gradient of the load–deflection curve. The static stiffness can be seen to be
relatively constant for preloads up to 25 kN, above which it increases sharply.
Values of the static and dynamic stiffness at selected preloads are given in Table 1.
The dynamic stiffness is mildly frequency dependent and the values given in
Table 1 apply at the frequencies listed. It can be seen that the dynamic stiffness
is much higher than the static stiffness at the same preload level. The
dynamic/static stiffness ratio is used in sections 4 and 5. In general, the rail is fixed
to the sleepers by clips. The clip applies a preload on the railpad which is about
20 kN for each pad. In addition the weight of the rail is also applied onto the pad
as a preload. For UIC 60 rail (60 kg/m) and a 0·6 m distance between two sleepers

Figure 1. Static load–deflection and load–stiffness curves for Pandrol studded 10 mm railpad
(redrawn from [12]). *initial preload point.
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T 1

Static and dynamic stiffness of Pandrol studded 10 mm railpad ( from [10])

Preload (kN) 20 30 40 60 80
Static stiffness (MN/m) 19 25 37 95 200
Dynamic stiffness at 50 Hz (MN/m) 61 82 130 300 650
Dynamic stiffness at 200 Hz (MN/m) 69 92 140 330 690
Dynamic stiffness at 500 Hz (MN/m) 81 110 170 390 780
Dynamic/static stiffness ratio at 50 Hz 3·2 3·3 3·5 3·2 3·3
Dynamic/static stiffness ratio at 200 Hz 3·6 3·7 3·8 3·5 3·6
Dynamic/static stiffness ratio at 500 Hz 4·3 4·4 4·6 4·1 3·9

each railpad is subjected to about 0·36 kN rail weight load. Thus the initial preload
in the railpad is about 20·36 kN. In Figure 1 this preload point is marked by ‘*’.

2.2.  

Detailed data for the ballast stiffness are not available at present, but some work
on the ballast stiffness is helpful to estimate the elastic properties of the railway
foundation. According to direct dynamic measurements, some points about the
ballast stiffness variation have been highlighted by Frémion et al. [12]. It is found
that vertical stiffness of the ballast is influenced by a static preload and increases
significantly with the frequency. They suggested that the ballast stiffness may be
assumed to follow the Hertz law because the law in W 1/3 is consistent with the
experimental results, where W is the static preload. A summary of the direct
stiffness measurements from [12] is given in Table 2. It can be seen that a doubling
of the ballast stiffness occurs from 50 Hz to 200 Hz and again from 200 Hz to
500 Hz, and changing the preload from 1·2 kN to 11 kN leads to a doubling of
the vertical stiffness. However, when the preload increases from 11 to 21 kN, the
vertical stiffness increases only by about 15%.

By use of the data in Table 2 and the suggestion that the vertical stiffness follows
the Hertz law, one assumes that the ballast stiffness kb can be represented by

kb = az3 fb , (1)

where fb and a are the load and the constant coefficient respectively. Because
stiffness is the derivative of the load with respect to the deflection u; kb =dfb /du,
the load–deflection law for ballast can be derived from it and has the form of

u=(1·5/a)z3 f 2
b . (2)

T 2

Vertical ballast stiffness for a sleeper block with an area of 0·23m2 (from [12])

Static load (kN) 50 Hz (MN/m) 200 Hz (MN/m) 500 Hz (MN/m)

1·2 50 130 –
11 120 210 420
21 125 240 480
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Figure 2. Dynamic load-deflection and load-stiffness curves for ballast at 50 Hz and 200 Hz. —
at 50 Hz; – · –, at 200 Hz; *, initial preload point; o, points from Table 2.

The load–stiffness and load–deflection curves for the ballast at 50 Hz and
200 Hz are shown in Figure 2, where the constant coefficient a is determined using
the data at the static load 11 kN. The ballast stiffness can be seen to increase very
sharply when preload increases from zero and the rate of increase of the ballast
stiffness becomes smaller as the preload increases further. Therefore, the increment
tendency of the ballast stiffness is the opposite of that of the pad stiffness. The
initial preload in the ballast is from the rail weight and the sleeper weight. A
monobloc concrete sleeper weighs about 3 kN. The weight of half a sleeper and
0·6 m rail forms the initial preload in the ballast at each support, which is about
1·86 kN and marked by ‘*’ in Figure 2. Some other data about the ballast stiffness
can be found in Appendix A, which confirm the load–deflection relationship given
above.

2.3.    

The elasticity of the rail foundation is formed by both railpad and ballast, but
now the superposition principle does not hold because of their non-linearity. To
obtain the load–deflection and load–stiffness laws of the foundation the whole
evolution of the deformation from zero in the pad and ballast should be taken into
consideration. Figure 3 shows the loads on the pad and the ballast. Wr and Ws

represent the weights of the rail in one span and of the sleeper respectively. fc is
the preloads from the clips. f is the external load and Dup and Dub represent
deflections of the pad and the ballast respectively caused by f. The following values
are used for the parameters (as above): Wr =0·36 kN, Ws =1·5 kN, fc =20 kN.

The foundation deflection u should be equal to the sum of the pad deflection
and the ballast deflection:

u=Dup +Dub . (3)

Since the clip stiffness is much softer than the pad, fc can be regarded as constant
when the pad is subjected to a deformation caused by the external load f. Thus
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Figure 3. Loads on the pad and ballast.

the pad deflection Dup and the ballast deformation Dub under the external load f
can be written as

Dup = up ( f+ fc +Wr )− up ( fc +Wr ), Dub = ub ( f+Wr +Ws )− ub (Wr +Ws ),

(4a, b)

where up ( f) and ub ( f) are the deflections as a function of load of the pad and
ballast respectively.

Because the data for the ballast static stiffness are not available, it is assumed
here that the ballast static stiffness may be estimated to have values that are 25,
50 or 100% of the dynamic stiffness at 50 Hz, which are represented as soft,
medium and stiff ballast respectively. Using the load–deflection curves in Figure
1 for the pad and the load–deflection law in equation (2) for the ballast, the

Figure 4. Foundation load-deflection and load-stiffness curves. —, stiff ballast; – · –, medium
ballast; - - - , soft ballast.
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Figure 5. Beam on the elastic foundation. By symmetry with suitable boundary conditions the
upper system can be replaced by the lower system.

load–deflection law for the complete rail foundation can be obtained by equations
(3) and (4). Figure 4 shows these combined load–deflection and load–stiffness
curves of the rail foundation. The load–stiffness curve is derived from the
load–deflection curve. Three graphs are shown, respectively, the soft, medium and
stiff ballast assumptions. It can be seen that the rail foundation retains
non-linearity.

3. DEFLECTION AND REACTION FORCE IN THE RAILWAY FOUNDATION
UNDER THE WHEEL LOAD

3.1.       -  

In order to determine the deflection and reaction force in the track foundation
due to a wheel load, the wheel load can be represented by a concentrated load and
the railway track is simplified to an infinite uniform beam supported by a
continuous elastic foundation. For the beam on a linear elastic foundation
Timoshenko gave an exact solution in reference [13]. However, the railway track
foundation considered here is non-linear rather than having a constant modulus.
This makes the problem much more difficult to solve than the linear elastic case.

The differential equation for the rail deflection has the form of

EI d4u/dz4 =−f(u)/d, (5)

where f(u) is the reaction force in the foundation of one span as a function of
deflection u and d is the span length. EI is the bending stiffness of the beam and
z is the distance along the track. f(u) is determined by the load–deflection law in
Figure 4. The rail and sleeper weights vanish now because their effect has already
been included in the procedure of deriving the load–deflection law of the
foundation. Only half of the beam need be considered due to the symmetry
condition at the load point, see Figure 5. The boundary conditions for equation
(5) are:

u'(0)=0, u1(0)=P/2EI, u(a)=0, u'(a)=0, (6a–d)

where P is the wheel load acting at the position z=0 and ' indicates the derivative
with respect to z. Boundary conditions (6c) and (6d) mean that at points infinitely
distant from the load P the deflection and the slope vanish.
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3.2.  —     

Equation (5) with the boundary conditions (6) forms a non-linear boundary
value problem which may be solved numerically. It is difficult to solve because
equation (5) is a fourth order differential equation and some boundary conditions
in (6) should be satisfied at the infinitely distant points. The starting point for the
numerical calculation should be chosen at z=0. There are two parameters at
z=0 which have to be estimated in order to meet the boundary conditions at
z=a. These are u(0) and u0(0). For performing the numerical calculation some
points should be considered:

(1) It is impossible to meet the boundary conditions at z=a because the errors
introduced by numerical approximations will ruin the solution as z becomes very
large. By referring to the analytical solution of the beam on a linear elastic
foundation, a reasonable value may be estimated for z, at which the boundary
conditions should be satisfied instead of at z=a. In the case of the linear elastic
foundation the beam deflection is given as in [13]:

u=(Pb/2k) e−bz(cos bz+sin bz) (7)

where b=z4 k/(4EI), k is the constant modulus of the foundation. The deflection
can be seen to decay very quickly with the power of −bz. u', u0 and u1 have the
same decay rate as u. From the authors’ experience, the boundary conditions at
z=a may be regarded as the boundary conditions at z=40 5 m.

(2) Since there are two values required at the beginning, u(0) and u0(0), the
normal ‘‘shooting method’’ [14] is not appropriate. Here a simple direct 2-D
searching method is developed. It is divided into two stages. Firstly, the searching
procedure is performed in a larger area with a large step size to obtain a rough
solution. Then the same procedure is performed but in a small area and with a
fine step size. This method is found to be quite effective for 2-D searching.

The numerical results of both the foundation deflection and the reaction force
in the foundation are shown in Figure 6, where the span length d=0·6 m, the
wheel load P=75 kN and EI=6·4×106 Nm2 for UIC 60 rail. Three curves are
shown representing the results from the soft, medium and stiff ballast stiffness
assumptions. It can be seen that the foundation deformation occurs only in the
near field of the wheel load. At z=0, where the load P acts, the deflection has
its maximum value, but from about z=2·3 m for the stiff ballast, z=2·5 m for
the medium one and z=3 m for the soft one the foundation deflection is almost
zero (Note—although negative deflection occurs, neither the ballast nor the pad
unload completely). The stiffer the foundation, the smaller the maximum
deflection at z=0, and the quicker the decay of the deflection. The decay rate of
the deflection is similar to that in the case of the linear elastic foundation, in which
it is e−bz. The curve of the reaction force in the foundation is similar to the
deflection. The reaction force also occurs only in the near field of the wheel load
and has the maximum value at z=0. The stiffer foundation has a larger maximum
reaction force. For the reaction force the decay rate is also higher for the stiffer
foundation, but in the area near to z=0 it is noticeably sharper than the deflection
decay. This is because the stiffness of the foundation increases with increasing
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Figure 6. Foundation deflection and reaction force under 75 kN wheel load. Key as for Figure 4.

deflection. For smaller deflections the foundation is softer, and thus the reaction
force is smaller.

For comparison, Figure 7 shows the foundation deflection and the reaction
force from a linear elastic foundation model having a constant modulus k
equivalent to the medium ballast assumption and the wheel load P=75 kN. k is
chosen to give the same maximum deflection as the non-linear elastic foundation,

u(0)=Pb/2k, (8)

where u(0) is the deflection at z=0 from the non-linear foundation model, and
b=z4 k/(4EI). It can be seen from Figure 7 that the foundation deflection of the
linear model is quite close to that of the non-linear model, but the reaction force
is not as sharp as in the non-linear model. The region with negative deflection and
reaction force is greater in the linear case than in the non-linear case. It should
be pointed out that there is no general approximate linear solution for the
non-linear elastic foundation model because the equivalent constant stiffness needs
to be determined using the deflection at z=0 from the non-linear model.

Figure 7. Comparison of the results from non-linear foundation model and equivalent linear
foundation model, P=75 kN, medium ballast. —, non-linear foundation; – · – , linear foundation
(k=28·71 MN/m2).
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Figure 8. Integral limits for calculating the preload at each support. (a) load at mid-span, (b) load
above a sleeper.

4. PAD AND BALLAST STIFFNESSES UNDER PRELOAD

4.1.     

The pad and ballast stiffnesses are dependent on the preload in them. Under
the wheel load, the foundation deflection and reaction force have different values
at different places so that the railpads and ballast are subjected to different
preloads at different supports. The preloads in the pad and ballast can be
calculated on the basis of the foundation deflection u(z) and the load–deflection
law f [u(z)] as derived in the previous sections. Two situations are considered here
to determine the preloads in the pad and the ballast. In the first the wheel load
is acting at mid-span (half way between two sleepers), and in the other the wheel
load is acting above a sleeper.

The preload Pf in the foundation at different supports can be obtained by
performing the following definite integral between corresponding limits z1 and z2:

Pf =g
z2

z1

f[u(z)]
d

dz. (9)

Figure 8 shows schematically the integral limits for calculating the preload at each
support in the two wheel load situations. For the wheel load acting at mid-span,
the integral limits are from (n−1)d to nd for the nth support. For the wheel load
acting above a sleeper the integral limits are from 0 to d/2 for the first support
(n=0) and the integral should be doubled. For the others the integral limits are
from (2n−1)d/2 to (2n+1)d/2 for the nth support.

The results of the preloads in pad and ballast at different supports are listed in
Tables 3 and 4 for the wheel loads P=75 and 125 kN respectively. The same
parameters as in the previous sections are used. The preload in the pad Pp includes
the clip load fc and the rail weight. The preload in the ballast Pb includes the rail
and sleeper weights. They are calculated by using following equations:

Pp =Pf + fc =Wr , Pb =Pj +Wr +Ws . (10a, b)

It can be seen from Tables 3 and 4 that the preloads in the pad and ballast reach
the maximum values at the nearest support to the wheel load, and decrease with
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increasing the distance from the wheel load. The effects of the wheel load on the
preloads in the pad and ballast are seen only at a limited number of supports, for
example, five supports at each side of the wheel load. Except for these supports,
the preload at other supports further away from the wheel load may be
approximately regarded as only having rail weight and clip loads for the pad, rail
and sleeper weight loads for the ballast. Therefore, the influence of the wheel loads
on the preloads in the pad and ballast is local. Compared with the wheel loads
acting at mid-span, when the wheel load acts above a sleeper, the pad and the
ballast at that support will bear a larger preload. The changing of the ballast
stiffness from soft to stiff only causes a slight difference in the preloads of the pad
and ballast. When the ballast stiffness changes from soft to stiff, the preload
distribution at different supports becomes slightly more localised in the vicinity of
the wheel.

4.2.     

The preloaded pad and ballast stiffnesses can be determined from their
load-stiffness laws. In reference [10] it is found that the pad dynamic stiffness varies
slightly with frequency. At 200 Hz the dynamic stiffness to static stiffness ratio is
about from 3·5–3·8 and this can be used to derive a load-dependent but
frequency-independent approximation (see Table 1). For higher frequency it is
slightly higher than this. Here a ratio of 3·6 is used for the pad dynamic stiffness.

T 3

Preloads (kN) in pad and ballast caused by a wheel load of 75 kN

Wheel load
ZXXCXXV Above a sleeper (P=75 kN) At a midspan (P=75 kN)
Static ballast ZXXXXXCXXXXXV ZXXXXXCXXXXXV

stiffness Soft Medium Stiff Soft Medium Stiff

Pad 0 43·84 45·66 46·88 – – –
position 1 36·86 37·28 37·47 41·54 42·86 43·71

2 28·46 27·94 27·54 32·34 32·13 31·90
3 23·28 22·67 22·33 25·45 24·81 24·40
4 20·96 20·54 20·41 21·84 21·31 21·08
5 20·30 20·08 20·13 20·50 20·18 20·14
6 – – – 20·27 20·12 20·26
a 20·36 20·36 20·36 20·36 20·36 20·36

Ballast 0 25·34 27·16 28·38 – – –
position 1 18·36 18·78 18·97 23·04 24·36 25·21

2 9·96 9·44 9·38 13·84 13·63 13·40
3 4·78 4·17 3·83 6·95 6·31 5·90
4 2·46 2·04 1·91 3·34 2·81 2·58
5 1·80 1·58 1·63 2·00 1·68 1·64
6 – – – 1·77 1·62 1·76
a 1·86 1·86 1·86 1·86 1·86 1·86
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T 4

Preloads (kN) in pad and ballast caused by a wheel load of 125 kN

Wheel load
ZXXCXXV Above a sleeper (P=125 kN) At a midspan (P=125 kN)
Static ballast ZXXXXXCXXXXXV ZXXXXXCXXXXXV

stiffness Soft Medium Stiff Soft Medium Stiff

Pad 0 63·01 67·52 71·14 – – –
position 1 48·20 48·39 48·07 58·07 60·92 62·89

2 32·51 31·21 30·26 39·32 38·25 37·27
3 24·36 23·36 22·79 27·67 26·46 25·67
4 21·02 20·48 20·29 22·25 21·48 21·13
5 20·16 19·96 20·03 20·40 20·04 19·99
6 – – – 20·14 20·07 20·24
a 20·36 20·36 20·36 20·36 20·36 20·36

Ballast 0 44·51 49·02 52·64 – – –
position 1 29·70 29·89 29·57 39·57 42·42 44·39

2 14·01 12·71 11·76 20·82 19·75 18·77
3 5·86 4·86 4·29 9·17 7·96 7·17
4 2·52 1·98 1·79 3·75 2·98 2·63
5 1·66 1·46 1·53 1·90 1·54 1·49
6 – – – 1·64 1·57 1·74
a 1·86 1·86 1·86 1·86 1·86 1·86

The ballast stiffness is also frequency dependent, but less data are available. In
order to allow for the larger area of ballast in contact with a monobloc sleeper,
the ballast stiffness at 200 Hz in Table 2, which was measured with bibloc sleepers,
has been multiplied by 1·3 for calculating the ballast dynamic stiffness. Note that
the soft, medium and stiff approximations apply only to the static ballast stiffness
and not the dynamic stiffness, which is the same in each case.

The preloaded pad and ballast dynamic stiffnesses in different wheel load
situations are listed in Tables 5 and 6. The stiffness variation is similar to the
preload variation in Tables 3 and 4. At the nearest support to the wheel load the
pad and ballast stiffnesses have the maximum values, and gradually reduce to some
stable value with increasing distance from the wheel load. These stable values are
the stiffness of the pad under the clip load and the rail weight and the stiffness
of the ballast under the rail and sleeper weights. The effects of the wheel load on
the pad and ballast stiffness are also local, for example, on five pads and the ballast
under five sleepers at each side of the wheel load. For other pads and sleepers more
distant from the wheel load, their stiffness may approximately be regarded as
uniform. Comparing the data in Table 5 to those in Table 6 one can see that the
stiffness of the preloaded pads at the supports near the wheel load dramatically
increases when the wheel load increases from 75 to 125 kN. This is because
the pad stiffness increases sharply if the preload is above 40 kN (see Figure 1).
The ballast stiffness also increases when the wheel load goes up, but not
so sharply.
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5. VERTICAL RAIL VIBRATION CONSIDERING PRELOADED PAD AND
BALLAST STIFFNESS

5.1.     

The dynamic railway track model used for exploring the vertical vibration
behaviour under the local wheel load is shown in Figure 9. It is represented by
an infinite uniform Timoshenko beam which is discretely supported by the
railpads, sleepers and ballast. The beam is characterised by EI, the bending
stiffness, G, the shear modulus, r, the density, A, the cross-sectional area, k, the
shear coefficient and hr , the damping loss factor. The nth railpad is modelled by
a stiffness Kpn and a damping loss factor hp . The subscript n indicates that the pad
stiffness may have different values at different supports because the pads are
subjected to the preloads due to the local deformation of the track foundation
caused by the train weight. The pad loss factor is assumed constant, consistent
with measurements in [10]. The sleeper is modelled as a mass Ms . The ballast is
modelled by a stiffness Kbn and a damping loss factor hb . The subscript n again
indicates that the ballast stiffness may have different values at different supports
due to the preload. Since the train speed is much lower than the flexural wave
propagation speed in the rail, the dynamic excitation imposed by the rolling wheel
is represented by a stationary harmonic force F eivt, where i=z−1 and v is the
angular frequency of the harmonic excitation.

T 5

Preloaded pad and ballast dynamic stiffness (MN/m) for wheel load 75 kN

Wheel load
ZXXCXXV Above a sleeper (P=75 kN) At a midspan (P=75 kN)

Static ballast ZXXXXXCXXXXXV ZXXXXXCXXXXXV
stiffness Soft Medium Stiff Soft Medium Stiff

Pad 0 161·4 174·4 183·7 – – –
position 1 119·7 121·9 122·9 146·7 155·1 160·5

2 86·9 85·3 84·1 99·6 98·9 98·1
3 73·2 72·3 71·8 78·0 76·1 74·9
4 69·8 69·1 68·8 71·0 70·2 69·9
5 68·7 68·3 68·4 69·0 68·5 68·4
6 – – – 68·6 68·4 68·6
a 68·8 68·8 68·8 68·8 68·8 68·8

Ballast 0 360·6 369·0 374·5 – – –
position 1 323·9 326·3 327·4 349·3 355·9 360·0

2 264·1 259·4 255·7 294·8 293·2 291·6
3 206·8 197·5 192·1 234·2 226·9 221·9
4 165·8 155·8 152·3 183·4 173·3 168·3
5 149·3 142·9 144·6 154·6 146·0 144·9
6 – – – 148·4 144·2 148·2
a 151·0 151·0 151·0 151·0 151·0 151·0
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T 6

Preloaded pad and ballast dynamic stiffness (MN/m) for wheel load 125 kN

Wheel load
ZXXCXXV Above a sleeper (P=125 kN) At a midspan (P=125 kN)

Static ballast ZXXXXXCXXXXXV ZXXXXXCXXXXXV
stiffness Soft Medium Stiff Soft Medium Stiff

Pad 0 376·3 473·7 551·1 – – –
position 1 193·6 195·0 192·6 330·2 357·5 375·2

2 100·2 95·7 92·6 132·8 127·1 121·9
3 74·8 73·3 72·4 84·5 81·0 78·6
4 69·8 69·0 68·7 71·6 70·5 69·9
5 68·5 68·2 68·3 68·8 68·3 68·2
6 – – – 68·4 68·3 68·6
a 68·8 68·8 68·8 68·8 68·8 68·8

Ballast 0 435·1 449·3 460·1 – – –
position 1 380·2 381·0 379·6 418·3 428·1 434·7

2 296·0 286·5 279·2 337·7 331·8 326·3
3 221·3 207·9 199·5 256·9 245·1 236·7
4 167·1 154·1 149·1 190·7 176·7 169·4
5 145·3 139·2 141·5 152·0 141·9 140·3
6 – – – 144·8 142·6 147·7
a 151·0 151·0 151·0 151·0 151·0 151·0

The discretely supported track model can be treated in various ways. One
approach is developed by Heckl [15]. In this approach the discrete rail supports
are replaced by corresponding external forces, and thus the railway track can be
simply considered as an infinite beam with many point forces acting on it. Based
on the Green’s function and the superposition principle the stationary response
of the rail to the harmonic excitation can be obtained. In addition although the
beam is infinite, it is modelled with a finite number of supports, this number being
chosen large enough to guarantee a reliable approximate solution. This approach
is also employed here but now the support stiffness is not uniform due to the wheel
load. Moreover the symmetry of the railway track about the forcing point for

Figure 9. Discretely supported railway track model.
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excitation above a sleeper or at mid-span is taken into account to increase the
efficiency of the calculation.

The Green’s function G(z, z') for an infinite Timoshenko beam is the response
at point z to a unit harmonic force at z' [16]:

G(z, z')= (u1 e−ik1=z− z'= + u2 e−k2=z− z'=) eivt, (11)

where k1 and k2 are the respective complex wavenumbers of the propagating and
evanescent waves in the free Timoshenko beam, given by

k1 = (v/z2){r/E+ r/Gk+[(r/E− r/Gk)2 +4rA/EIv2]1/2}1/2, (12a)

k2 = (v/z2){−(r/E+ r/Gk)+ [(r/E− r/Gk)2 +4rA/EIv2]1/2}1/2, (12b)

and u1 and u2 are defined by

u1 =
i

EGk

rIv2 −GkA−EIk2
1

2Ak1(k2
1 + k2

2 )
, u2 =

1
EGk

rIv2 −GkA−EIk2
2

2Ak2(k2
1 + k2

2 )
. (13a, b)

Here the formulation given in [15] has been modified by the inclusion of the shear
coefficient k and more convenient notation as in [16]. The rail loss factor is
included in these equations by making E and G complex with the factor (1+ ihr ).

Consider now such a beam attached to the supports with dynamic stiffness Zn

at the position z= zn , see Figure 9. A single external harmonic force F eivt acts
at the point z= zF . The dynamic stiffness Zn is the ratio of force to the
displacement caused by that force and given by

Zn =
Kpn (1+ ihp )[Kbn (1+ ihb )−Msv

2]
Kpn (1+ ihp )+Kbn (1+ ihb )−Msv

2 . (14)

The total displacement u at a point z is given by the superposition of the response
to the external force F eivt and the response to the forces from all the support
points:

u(z)=− s
N

n=−N
n$ 0

Znu(zn )G(z, zn )+FG(z, zF ). (15)

The displacement at each support point z= zm can be given by

u(zm )=− s
N

n=−N
n$ 0

Znu(zn )G(zm , zn )+FG(zm , zF ), m=21, 22, . . . . , 2N

(16)

From equation (16) the displacements at each support point can be solved in terms
of F by taking the sum to the left side and then inverting the matrix of coefficients
of u(zm ). Substituting them into equation (15), one can obtain the displacement
at any point on the rail.

If the external force F eivt acts at mid-span or above a sleeper, the symmetry of
the problem can be used to reduce the dimension of equations (15) and (16). For
example, when F eivt acts at mid-span where z=0 and thus zF =0, the
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Figure 10. Special case of discretely supported track model where external force acts above a
sleeper.

displacements are symmetric with respect to the point z=0 and the following
relationship holds:

u(z)= u(−z), Zn =Z−n , G(z, z')=G( − z, −z'). (17a–c)

Thus only half the support point displacements in equations (15) and (16) need
to be determined. Equations (15) and (16) can now be simplified by using equation
(17) to give

u(z)=− s
N

n=1

Znu(zn )[G(z, zn )+G(z, −zn )]+FG(z, 0), (18)

u(zm )=− s
N

n=1

Znu(zn )[G(zm , zn )+G(zm , −zn )]+FG(zm , 0),

m=1, 2, . . . N. (19)

For the external force acting above a sleeper, again taking the forcing point as
z=0 (see Figure 10), the displacements can be determined by the following
equations considering the symmetric conditions:

u(z)=−Z0u(0)G(z, 0)− s
N

n=1

Znu(zn )[G(z, zn )+G(z, −zn )]+FG(z, 0), (20)

u(zm )=−Z0u(0)G(z, 0)− s
N

n=1

Znu(zn )[G(zm , zn )+G(zm , −zn )]+FG(z, 0),

m=0, 1, 2, . . . . , N. (21)

By using symmetric conditions the computing time is reduced dramatically
because only half the number of displacements need to be calculated.

5.2.  

The point receptance of the track for vertical vibration is calculated for the
external excitation acting either above a sleeper or at mid-span in the frequency
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range from 50–1500 Hz. The wave propagation decay rate along the rail is
examined in the same frequency range. To investigate the effects of the local wheel
load on the track vertical vibration behaviour the preloaded pad and ballast
stiffnesses listed in Tables 5 and 6 are employed in the numerical calculation
and the results are compared to those from the track model having uniform
pad and ballast stiffnesses. The following parameters are used in numerical
calculations: E=2×1011 N/m2, G=0·77×1011 N/m2, hr =0·01, r=8000 kg/m3,
A=0·75×10−2 m2, I=3·2×10−5 m4, k=0·4, Ms =150 kg, hp =0·25, hb =0·6,
d=0·6 m, N=40 (for receptance), N=60 (for decay rate). These are chosen to
represent UIC 60 rail [17] and the sleeper mass represents half of the mass of a
concrete monobloc sleeper. The ballast loss factor is chosen lower than in [17] in
order to make effects in the response more visible.

Because the deformation of the track foundation caused by the wheel load is
local and only a limited number of pads and ballast springs are preloaded by the
wheel load, the pad and ballast stiffnesses are assigned different values at only the
first six supports on each side of the wheel load (including n=0 for the case of
excitation above a sleeper) and from the seventh support they have uniform values.
The preloaded pad and ballast stiffnesses listed in Tables 5 and 6 for the stiff ballast
assumption are used in the calculation.

5.2.1. Receptance

The amplitude and phase of the point receptances of the track are shown in
Figures 11 and 12 which give the results for the wheel load P=75 and 125 kN
respectively. Figures 11(a) and 12(a) show the results when the wheel load acts at

Figure 11. Amplitude and phase of the point receptances, for P=75 kN. (a) load at mid-span,
(b) load above a sleeper. —, varying stiffness foundation; – · –, uniform stiff foundation; - - - ,
uniform soft foundation.
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Figure 12. Amplitude and phase of the point receptances, for P=125 kN. (a) load at mid-span,
(b) load above a sleeper. Key as for Figure 11.

mid-span and Figures 11(b) and 12(b) show the results when the wheel load acts
above a sleeper. The solid lines in Figures 11 and 12 are the results from the model
having different pad and ballast stiffness at different supports near the wheel load.
The dotted lines are the results from the model having uniform pad and ballast
stiffness at each support point which has the values as at the seventh support
point—this case represents a uniform soft or unloaded foundation. The
dotted–dashed lines also are the results from the model having uniform pad and
ballast stiffness but which has the values as at the first support point—this case
represents the uniform stiff or loaded foundation.

Two well-damped resonances can be seen, at about 130 and 260 Hz for the
uniform soft foundation model. These occur at higher frequencies for both the
uniform stiff foundation and the varying stiffness foundation models—in Figure
11 where P=75 kN they occur at about 200 and 400 Hz and in Figure 12 where
P=125 kN they occur at about 220 and 600 Hz. At the first resonance the whole
track bounces on the ballast stiffness, whereas at the second the rail vibrates on
the pad stiffness. At about 1050 Hz the pinned–pinned resonance, which
corresponds to a standing wave with nodes at the sleepers, can be seen for all the
models although there are different peak values from different models.

It can be seen from Figures 11 and 12 that the uniform stiff foundation model
and the varying stiffness foundation model have almost the same receptance curves
in the frequency range up to about 1000 Hz. Based on this it may be considered
that the point receptances of a railway track at low frequencies (below the
pinned–pinned resonance) are governed by the local supports near the wheel load.
This point can be further verified by the curves in Figure 13. The solid lines in
Figure 13 come from the rail on the uniform stiff foundation under the wheel load
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P=75 kN, and the dotted lines come from the same rail but having only three
uniform supports for the wheel load acting above a sleeper (n=0, 21), or four
uniform supports for the wheel load acting at mid-span (n=21, 22). The fact
that these two lines almost overlap each other except near the pinned–pinned
frequency indicates again that the receptances of a railway track at low frequencies
are controlled by only a few supports near the wheel load. In addition it can be
seen from Figures 11 and 12 that the stiffer the foundation, the lower the
receptances in the low frequency region and the higher the frequencies
corresponding to the two low frequency resonances of the rail vibration.

With regard to the pinned–pinned resonance peaks, it can be seen from Figures
11 and 12 that the peak is higher in the case of the uniform stiff foundation than
the uniform soft or varying stiffness foundations, whereas in the latter two cases
the peaks are equally high. The first fact implies that the pinned–pinned resonance
is stronger when the rail foundation is stiffer and the second implies that the local
stiffness variation in the rail foundation near the wheel load has no obvious effects
on the pinned–pinned resonance.

5.2.2. Decay rate

The decay rates of the wave propagation along the rail for different models are
shown in Figures 14 and 15. These are calculated from the decay in vibration level
over a thirty span length from the excitation point divided by this distance (18 m).
The curves in Figure 14 are for the wheel load P=75 kN and in Figure 15 for
P=125 kN. Figures 14(a) and 15(a) show the results when the wheel load acts
at mid-span and Figures 14(b) and 15(b) show the results when the wheel load acts

Figure 13. Amplitude and phase of the point receptances, for P=75 kN. (a) load at mid-span,
(b) load above a sleeper. —, uniform stiff foundation; - - - , four uniform supports for load at
mid-span and three uniform supports for load above a sleeper.
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Figure 14. Decay rates of the wave propagation along the rail, for P=75 kN. (a) load at
mid-span, (b) load above a sleeper. Key as for Figure 11.

above a sleeper. The solid lines here again represent the varying stiffness
foundation model. The dotted lines represent the uniform soft foundation model
and the dotted–dashed lines represent the uniform stiff foundation model. In
general for all models, the decay rates can be seen to be very high in the low
frequency region and very low in the high frequency region. They gradually
decrease with increasing frequency and then reach a local trough and a local peak.
For the uniform foundation models this peak corresponds to a trough in the
receptance. After the peak the decay rates drop steeply, and then have a sharp peak
just above the pinned–pinned resonance frequency. It can be seen from Figures
14 and 15 that the decay rate is higher in the case of the uniform stiff foundation
than the uniform soft and varying stiffness foundations, whereas in the latter
foundations the decay rates are almost the same for both values of the wheel load
P=75 or 125 kN. This implies that the effect of the local stiffness variation in the
track foundation near the wheel load on the average wave propagation decay rate
is very limited. The reason for this is that the pad and ballast are stiffened only
at a few supports near the wheel load and therefore their effects on the average
decay rate within a certain distance are not very noticeable. However, within about
two or three spans from the wheel load the local decay rate is higher than in distant
area due to the local loaded and thus stiffer supports. As an example Figure 16

Figure 15. Decay rates of the wave propagation along the rail, for P=125 kN. (a) load at
mid-span, (b) load above a sleeper. Key as for Figure 11.
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Figure 16. Amplitude of the transfer receptance at 600 Hz, load at mid-span. (a) for P=75 kN,
(b) for P=125 kN. Key as for Figure 11.

shows the amplitude decay of the transfer receptance which represents the response
at other positions along the rail to a unit harmonic force acting at z=0. In this
case the exciting frequency is 600 Hz. The solid lines in Figure 16 represent the
varying stiffness foundation model, the dotted lines the uniform soft foundation
model and the dotted–dashed lines the uniform stiff foundation model. Figure
16(a) is for the wheel load P=75 kN and Figure 16(b) for the wheel load
P=125 kN. The amplitude decay rate can be seen to be higher only in a local
area near the excitation point for the varying stiffness foundation model and to
be almost equal far from the excitation point for both varying stiffness foundation
and uniform soft foundation. This example at 600 Hz corresponds to a region in
Figures 14 and 15 where the varying stiffness and uniform soft foundation results
differed most.

Based on the facts that the point receptances at low frequencies are governed
by the local supports near the wheel load, whereas the pinned–pinned resonance
and the average decay rate of the wave propagation are determined by the
unloaded supports, a simpler vertical track vibration model may be a combination
of a few (three or four) preloaded supports near the external excitation and
unloaded supports at the other points along the rail. It would also be possible to
approximate the vertical track vibration using a combination of a model with
loaded supports to represent the receptance and a model with unloaded supports
to represent the average decay rate. Nevertheless, such an approximation would
overestimate the receptance at the rail-on-pad resonance, here between 400 and
600 Hz, by up to 4·5 dB.

6. CONCLUSION

In this paper the effects of a single wheel preload on the railway foundation
stiffness and vertical vibration have been studied. Firstly the non-linear
load–deflection relationship of the whole track foundation was obtained by
combining the pad and ballast load–deflection laws. Based on this load–deflection
law of the track foundation, the local foundation deformation caused by a single
static wheel load was obtained using a non-linear track model and hence the
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preloads in the pad and ballast are known. From a knowledge of the
load–frequency–stiffness laws of the pad and ballast, their dynamic stiffness at
different supports around the wheel load can be determined. To investigate the
effect of the preloaded pad and ballast stiffness on the track vertical vibration an
infinite discretely supported Timoshenko beam model has been employed, and the
point receptance of the rail and the wave propagation decay rate were calculated
by using different track foundation models including the uniform soft, uniform
stiff and varying stiffness foundations.

The results show that the deformations of the track foundation under a single
static wheel load are local and near the wheel load, so only a limited number of
railpads and ballast springs are preloaded by the wheel load. The preloaded pads
and ballast become stiffer and thus affect the railway vertical vibration behaviour
to some extent. The numerical predictions show that the track vertical vibration
properties below the pinned–pinned resonance frequency are noticeably influenced
through the stiffened pad and ballast due to the static wheel preload. The
receptance of the rail vibration is reduced at low frequency and the first two
resonance frequencies are increased when the preloaded pad and ballast stiffnesses
are employed in the vertical track vibration model. A good approximation to the
receptance is given by using the loaded stiffness throughout. On the other hand,
the local static wheel load does not affect the pinned–pinned resonance and affects
the average wave propagation decay rate along the rail only to a very limited
extent, and these can be predicted from the uniform unloaded (soft support) track
model.

This paper has given a general approach to investigate the influence of the local
preload on track vertical vibration and useful results have been obtained. Further
practical measurements need to be carried out to validate the predictions and also
essentially, more detailed information about the ballast static and dynamic
stiffness is needed.
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APPENDIX A: APPROXIMATIONS TO STATIC BALLAST STIFFNESS
MEASURED BY IGELAND AND OSCARSSON

In the model presented in the current paper, it has been assumed that the
relationship between the reaction force, f and the displacement, u of ballast has
the form:

f= bu3/2. (A1)

This has been based on very small amount of measurement points from reference
[12]. In reference [18] Igeland and Oscarsson give the results of more
comprehensive measurements of the static stiffness of ballast, performed at a site
known as Goose Hill in Sweden. The monobloc concrete sleepers were
disconnected from the rail and a load was applied to both the railseats of one
sleeper. The deflection of the sleeper end was measured against a fixed datum. The
results are reproduced in Figure A1(a) in which the load given is applied at each
railseat. Surprisingly large differences in the sleeper end deflection were found
between adjacent sleepers.

Before comparing these results with those from reference [12], it should be noted
that the latter results are based on a single block with base size 0·84 m×0·28 m.
In the results from reference [18] the sleeper is three times longer (2·5 m) so that
the overall stiffness can be expected to be greater. What is of interest here,
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Figure A1. Load applied to concrete monobloc sleeper at each rail seat versus deflection at sleeper
end. (a) Measured from [18]; —, sleeper 2; — —, sleeper 4; - - - , sleeper 5. (b) ——, approximations
based on equation (A2), - - - , measurements from (a).

however, is whether an expression of the form assumed in equation (A1) is also
appropriate to the data from reference [18]. Fitting an expression of this form to
the results from reference [18] gives a good fit for sleeper S5, but a poor fit for
the other sleepers. Sleepers S2 and S4 appear to be more closely represented by
a higher power, u2 and u5/2 respectively.

However, it may be noted that sleepers S2 and S4 exhibit a significant initial
deflection for only a small load, following which the results for all three sleepers
appear to have a similar slope. This suggests that a more appropriate model may
be one of the form:

f= f0 + b(u− u0)3/2 for uq u0. (A2)

Results for such a model are given in Figure A1(b). They can be seen to be a good
approximation to the measured results for appropriate choice of u0 and f0. The
slope parameter b, is found to be in the range 6·4×109–8·3×109 Nm−3/2 for all
three sleepers. This means that the variations found between the stiffnesses of the
adjacent sleepers are likely to be due not to the material behaviour of the ballast
or ground, but to the initial ‘‘slack’’ in the ballast under each sleeper. These values
of b correspond roughly to the 50 Hz dynamic stiffness values given in Table 2.

The measured data from reference [18] therefore appear to give reasonable
support to the use of a stiffness law such as equation (A1). Significant variations
are found, not in the stiffness law itself, but in the initial part of the load–deflection
curve.
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